Paints as a scalable and effective radiative cooling technology for buildings

Authors: J. Mandal,* N. Yu, Y. Yang, A. Raman*.

Journal Link: Joule, 4, 1-7 (2020).

Download Paper (Accepted Version)

Summary: In recent years, the field of radiative cooling (see below) has seen a fair bit of interest and different designs for various applications. However, cooling roofs and walls of buildings remain its greatest application, and white paints, owing to their convenience and modest radiative cooling capability, remain the benchmark for radiative coolers. Curiously, they are seldom mentioned in prominent works that have come out of late, and the paint industry, in turn, has been somewhat distant from advances made in the field.

This article aims to draw research interest into paints as highly efficient radiative coolers. Specifically, simple material and morphological alterations that can greatly enhance the cooler performances of paints are shown, and interdisciplinary challenges associated with their usage, such as the effect of dust or the need for durability, are discussed.

Radiative Cooling and Thermoregulation in the Earth’s Glow

Authors: J. Mandal,* S. Mandal, J. Brewer, A. Ramachandran, A. Raman*.

Preprint: Posted on arXiv (2020-06-21).

Download Preprint

Summary: Passive radiative cooling involves a net radiative heat loss into the cold outer space through the atmospheric transmission windows. Due to its passive nature and net cooling effect, it is a promising alternative or complement to electrical cooling. For efficient radiative cooling of objects, an unimpeded view of the sky is ideal. However, the view of the sky is usually limited – for instance, the walls of buildings have >50% of their field of view subtended by the earth. Moreover, objects on earth become sources of heat under sunlight. Therefore, building walls with hot terrestrial objects in view experience reduced cooling or heating, even with materials optimized for heat loss into the sky.

We show that by using materials with selective long-wavelength infrared (LWIR) emittances, vertical building facades experience higher cooling than achievable by using broadband thermal emitters like typical building envelopes. Intriguingly, this effect is pronounced in the summer and diminishes or even reverses during the winter, indicating a thermoregulation effect. The findings highlight a major opportunity to harness untapped energy savings in buildings.